metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,10-Phenanthrolin-1-ium nitrate-aguabis(4-hydroxybenzoato- $\kappa^2 O, O'$)(nitrato- $\kappa^2 O, O'$ (1,10-phenanthroline- $\kappa^2 N, N'$)erbium(III)-1,10-phenanthroline-water (1/1/0.5/2)

Fwu Ming Shen^a and Shie Fu Lush^b*

^aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and ^bDepartment of Genernal Eduction Center, Yuanpei University, HsinChu 30015, Taiwan

Correspondence e-mail: lush@mail.ypu.edu.tw

Received 22 November 2010; accepted 10 December 2010

Key indicators: single-crystal X-ray study; T = 97 K; mean σ (C–C) = 0.010 Å; disorder in main residue; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 13.2.

In the title compound, $C_{12}H_9N_2^+ \cdot NO_3^- \cdot [Er(C_7H_5O_3)_2(NO_3) - C_7H_5O_3)_2(NO_3)$ $(C_{12}H_8N_2)(H_2O)]\cdot 0.5C_{12}H_8N_2\cdot 2H_2O$, the water-moleculecoordinated Er^{III} ion is chelated by one 1,10-phenanthroline (phen) ligand, two 4-hydroxybenzoate anions and one nitrate anion in a monocapped square-antiprismatic coordination geometry. The uncoordinating phen molecule is approximately parallel to the 1,10-phenanthrolin-1-ium (Hphen) anion [dihedral angle = $3.3 (4)^{\circ}$]. The centroid–centroid distance of 3.801 (5) Å between pyridine rings suggests the existence of π - π stacking. The crystal structure contains an extensive network of classical O-H···O and N-H···O and weak C-H···O hydrogen bonds. C-H··· π interactions between phen and 4-hydroxybenzoate is also present in the crystal structure. In the crystal, the uncoordinating phen is equally disordered over two sites about an inversion center.

Related literature

For a related hydrothermal substitution reaction, see: Xiong et al. (2001). For related structures, see: Liu et al. (2007, 2010); Neelgund et al. (2007).

Experimental

Crystal data

 $C_{12}H_9N_2^+ \cdot NO_3^- \cdot [Er(C_7H_5O_3)_2 \beta = 84.790 \ (2)^{\circ}$ $(NO_3)(C_{12}H_8N_2)(H_2O)]$ -- $\gamma = 67.250 \ (2)^{\circ}$ $V = 2154.95 (10) \text{ Å}^3$ $0.5C_{12}H_8N_2 \cdot 2H_2O$ Z = 2 $M_{r} = 1071.07$ Triclinic, $P\overline{1}$ Mo $K\alpha$ radiation a = 10.9464 (2) Å $\mu = 2.03 \text{ mm}^{-1}$ b = 11.3682 (3) Å T = 97 Kc = 19.2638 (5) Å $0.35 \times 0.20 \times 0.18 \text{ mm}$ $\alpha = 77.108 \ (2)^{\circ}$

Data collection

Oxford Diffraction Gemini-S CCD diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\min} = 0.629, \ T_{\max} = 0.694$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	583 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 2.48 \text{ e} \text{ Å}^{-3}$
7710 reflections	$\Delta \rho_{\rm min} = -1.41$ e Å ⁻³

16237 measured reflections

 $R_{\rm int} = 0.028$

7710 independent reflections

6632 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Er1-O1	2.470 (4)	Er1-O6	2.366 (4)
Er1-O2	2.376 (4)	Er1-07	2.433 (4)
Er1 - O3W	2.358 (3)	Er1-N1	2.461 (4)
Er1-O4	2.372 (3)	Er1-N2	2.489 (4)
Er1-O5	2.399 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C32-C37 ring.

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1A\cdots O2^{i}$	0.82	2.55	3.270 (6)	148
$O1W-H1A\cdots O6^{i}$	0.82	2.22	2.875 (6)	137
$O1W-H1B\cdots O12^{i}$	0.82	2.06	2.872 (10)	172
$O2W - H2A \cdots O9^{ii}$	0.82	1.94	2.737 (8)	164
$O2W-H2B\cdots O11^{i}$	0.82	2.01	2.789 (10)	157
O3W−H3A···O5 ⁱⁱⁱ	0.82	1.90	2.671 (5)	155
$O3W-H3B\cdots O7^{iii}$	0.82	2.16	2.836 (5)	140
$N4-H4\cdots O2W$	0.86	1.91	2.725 (9)	157
$O8-H8\cdots O1W^{iv}$	0.82	1.87	2.659 (6)	160
$O9-H9\cdots O11^{v}$	0.82	2.09	2.803 (12)	145
$O9-H9\cdots O12^{v}$	0.82	2.43	3.172 (12)	151
$C34-H34\cdots O3^{v}$	0.93	2.43	3.256 (8)	148
C48−H48···O12 ^{vi}	0.93	2.27	3.046 (11)	141
C62-H62···O1 ^{vii}	0.93	2.55	3.387 (10)	150
$C70-H70\cdots O13^{i}$	0.93	2.35	3.244 (13)	161
$C83-H83\cdots Cg4^{ii}$	0.93	2.78	3.628 (9)	152

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) -x, -y + 1, -z; (iv) x - 1, y + 1, z - 1; (v) x - 1, y, z; (vi) x, y - 1, z; (vii) x, y + 1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

This work was supported financially by Yuanpei University, Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5103).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Liu, J.-L., Liu, J.-F. & Zhao, G.-L. (2010). Acta Cryst. E66, m1513.
- Liu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, m2544.
- Neelgund, G. M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2007). Acta Cryst. C63, m74–m76.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xiong, R.-G., Zhang, J., Chen, Z.-F., You, X.-Z., Che, C.-M. & Fun, H. K. (2001). J. Chem. Soc. Dalton Trans. pp. 780–782.

Acta Cryst. (2011). E67, m86-m87 [doi:10.1107/S1600536810051767]

1,10-Phenanthrolin-1-ium nitrate-aquabis(4-hydroxybenzoato- $\kappa^2 O, O'$)(nitrato- $\kappa^2 O, O'$)(1,10-phen-anthroline- $\kappa^2 N, N'$)erbium(III)-1,10-phenanthroline-water (1/1/0.5/2)

F. M. Shen and S. F. Lush

Comment

The coordination chemistry of erbium (III) with N and O donor ligands has been investigated in the past decade and numbers of erbium (III) complexes with different donor ligands have been synthesized and studied by X-ray crystallography (Liu *et al.*, 2010; Neelgund *et al.*, 2007; Liu *et al.*, 2007). The title compound was recently obtained from the reaction of erbium nitrate, sodium benzoate and phen in an methanol-water mixture, and its crystal structure is reported here. Since no 4-hydrobenzoic acid ligand is present in the starting reaction mixture, it may be derived from the benzoic acid *via in situ* substitution(Xiong *et al.*, 2001) under hydrothermal condition.

The Er^{III} ion is nine-coordinated by two N atoms of a phen ligand, four carboxylate O atoms of two 4-hydroxybenzoate anions, two O atoms of nitrate anion and one O atom of a water molecule. The resulting coordination geometry is a mono-capped square antiprismatic coordination (Table 1 and Fig. 1).

The phen molecule is approximately parallel to 1,10-phenanthrolinium (Hphen), making dihedral angle of 3.3 (4)°. The centroid-centroid distance between N4-pyridine and N7-pyridine rings is 3.801 (5) Å, indictative of π — π interaction. The crystal structure contain an extensive network of classical (O—H···O, N—H···O) and weak (C—H···O) hydrogen bonds (Table 2 and Fig. 2).

In addition, C—H··· π interaction (C83—H83···*Cg*4(C32—C37); full details and symmetry code are given in Table 2.) between phen and 4-hydroxybenzoate is present in the crystal structure.

Experimental

Erbium trinitrate solution was prepared by dissolving $Er(NO_3)_3.6H_2O$ (0.4631 g, 1.00 mmole) at room temperature with stirring. The ligand solution was prepared by dissolving benzoic acid (0.4889 g, 4 mmole) and 1,10-phenanthroline (4 mmole) in 20 ml methanol at room temperature. The pH of the ligand solution was adjusted to about 6 with 2 N NaOH. The Er solution was added drop wise and slowly to the ligand solution. The reaction mixture was stirred for 2 h at room temperature. Pink crystals were obtained at room temperature over a period 3 months.

Refinement

Position C82, N6, C86, N7, C87 and C88 of the phen ring split into two different atoms with 50% occupancies for each, respectively. H atoms bonded to O and N atoms were placed in calculated positions and refined with the distances constrains of O—H = 0.82, N—H = 0.86 Å, and $U_{iso}(H)=1.2U_{eq}(N)$ and $1.5U_{eq}(O)$. Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model with $U_{iso}(H)=1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level [symmetry code: (i) 2 - x, -y, 1 - z].

Fig. 2. The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.

1,10-Phenanthrolin-1-ium nitrate– aquabis(4-hydroxybenzoato- $\kappa^2 O, O'$)(nitrato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)erbium(III)–\1,10-phenanthroline-water (1/1/0.5/2)

Crystal data

$C_{12}H_9N_2^+ \cdot NO_3^- \cdot [Er(C_7H_5O_3)_2(NO_3)(C_{12}H_8N_2)(H_2O)] \not = C_{12}H_8N_2 \cdot 2H_2O$				
$M_r = 1071.07$	F(000) = 1076			
Triclinic, <i>P</i> T	$D_{\rm x} = 1.651 {\rm ~Mg~m}^{-3}$			
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å			
a = 10.9464 (2) Å	Cell parameters from 12670 reflections			
b = 11.3682 (3) Å	$\theta = 2.4 - 29.2^{\circ}$			
c = 19.2638 (5) Å	$\mu = 2.03 \text{ mm}^{-1}$			
$\alpha = 77.108 \ (2)^{\circ}$	T = 97 K			
$\beta = 84.790 \ (2)^{\circ}$	Block, pink			
$\gamma = 67.250 \ (2)^{\circ}$	$0.35\times0.20\times0.18~mm$			
$V = 2154.95 (10) Å^3$				

Data collection

Oxford Diffraction Gemini-S CCD diffractometer	7710 independent reflections
Radiation source: fine-focus sealed tube	6632 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$k = -13 \rightarrow 11$
$T_{\min} = 0.629, T_{\max} = 0.694$	$l = -23 \rightarrow 22$
16237 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.105$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0656P)^2 + 2.9468P]$ where $P = (F_0^2 + 2F_c^2)/3$
7710 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
583 parameters	$\Delta \rho_{max} = 2.48 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.41 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Er1	0.23247 (2)	0.40305 (2)	0.07892 (1)	0.0145 (1)	
01	0.3934 (4)	0.3029 (4)	0.17753 (19)	0.0232 (11)	
O2	0.3711 (3)	0.4927 (4)	0.11782 (19)	0.0234 (11)	
O3	0.4913 (4)	0.4118 (5)	0.2139 (2)	0.0406 (16)	
O3W	0.1453 (3)	0.3643 (3)	-0.01739 (18)	0.0176 (10)	
O4	0.2763 (3)	0.5363 (3)	-0.02595 (18)	0.0199 (11)	
O5	0.0975 (3)	0.6273 (3)	0.03472 (18)	0.0176 (11)	
O6	0.1303 (3)	0.4721 (4)	0.18419 (18)	0.0204 (11)	
O7	0.0106 (3)	0.4202 (3)	0.12003 (18)	0.0178 (11)	
O8	0.0969 (4)	1.1108 (4)	-0.2073 (2)	0.0379 (14)	
O9	-0.4015 (6)	0.6324 (7)	0.3624 (3)	0.084 (3)	
N1	0.4400 (4)	0.2592 (4)	0.0322 (2)	0.0166 (12)	
N2	0.2730 (4)	0.1678 (4)	0.1217 (2)	0.0200 (12)	
N8	0.4204 (4)	0.4033 (5)	0.1714 (2)	0.0224 (16)	
C21	0.1771 (5)	0.6361 (5)	-0.0180 (3)	0.0165 (16)	
C22	0.1524 (5)	0.7613 (5)	-0.0678 (3)	0.0165 (16)	
C23	0.2377 (5)	0.7697 (5)	-0.1251 (3)	0.0209 (17)	
C24	0.2173 (6)	0.8873 (6)	-0.1703 (3)	0.0265 (17)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C25	0.1121 (5)	0.9991 (5)	-0.1603 (3)	0.0240 (17)	
C26	0.0270 (5)	0.9913 (5)	-0.1026 (3)	0.0204 (17)	
C27	0.0462 (5)	0.8744 (5)	-0.0570 (3)	0.0189 (16)	
C31	0.0201 (5)	0.4661 (5)	0.1733 (3)	0.0173 (17)	
C32	-0.0930 (5)	0.5123 (5)	0.2214 (3)	0.0188 (17)	
C33	-0.2127 (5)	0.5001 (5)	0.2132 (3)	0.0233 (17)	
C34	-0.3172 (6)	0.5408 (6)	0.2595 (3)	0.0302 (19)	
C35	-0.3038 (7)	0.5950 (8)	0.3140 (4)	0.048 (3)	
C36	-0.1851 (7)	0.6091 (8)	0.3221 (4)	0.048 (3)	
C37	-0.0815 (6)	0.5674 (6)	0.2763 (3)	0.0307 (19)	
C41	0.5172 (5)	0.3009 (5)	-0.0162 (3)	0.0196 (16)	
C42	0.6408 (5)	0.2174 (6)	-0.0376 (3)	0.0232 (16)	
C43	0.6854 (5)	0.0893 (5)	-0.0062 (3)	0.0234 (16)	
C44	0.6101 (5)	0.0409 (5)	0.0460 (3)	0.0226 (17)	
C45	0.6523 (6)	-0.0923 (6)	0.0828 (3)	0.0282 (17)	
C46	0.5745 (6)	-0.1344 (6)	0.1304 (3)	0.0323 (19)	
C47	0.4424 (6)	-0.0499(5)	0.1450 (3)	0.0247 (17)	
C48	0.3541 (6)	-0.0925 (6)	0.1906 (3)	0.0315 (19)	
C49	0.2285 (6)	-0.0087 (6)	0.1985 (3)	0.0282 (17)	
C50	0.1909 (5)	0.1214 (6)	0.1633 (3)	0.0241 (17)	
C51	0.3980 (5)	0.0820 (5)	0.1119 (3)	0.0186 (17)	
C52	0.4844 (5)	0.1306 (5)	0.0621 (3)	0.0176 (16)	
N6	0.9403 (6)	0.1675 (6)	0.4488 (3)	0.0379 (19) 0.	500
N7	0.9737 (6)	-0.0343 (6)	0.4147 (3)	0.0373 (19) 0.	500
C81	0.9773 (6)	0.0350 (6)	0.4644 (3)	0.0307 (17)	
C82	0.9403 (6)	0.1675 (6)	0.4488 (3)	0.0379 (19) 0.	500
C83	0.8975 (7)	0.2307 (8)	0.3798 (4)	0.050 (3)	
C84	0.8912 (8)	0.1665 (9)	0.3303 (4)	0.054 (3)	
C85	0.9291 (7)	0.0356 (9)	0.3474 (4)	0.050 (3)	
C86	0.9737 (6)	-0.0343 (6)	0.4147 (3)	0.0373 (19) 0.	500
C87	0.9379 (12)	0.2441 (15)	0.5036 (8)	0.049 (5) 0.	500
C88	0.9813 (13)	0.1792 (15)	0.5675 (8)	0.045 (5) 0.	500
N3	0.6566 (5)	0.8871 (7)	0.4088 (3)	0.047 (2)	
N4	0.7372 (5)	0.7810 (6)	0.5468 (3)	0.0404 (19)	
C61	0.6104 (7)	0.9421 (10)	0.3441 (4)	0.075 (2)	
C62	0.5602 (7)	1.0749 (10)	0.3179 (5)	0.075 (2)	
C63	0.5605 (7)	1.1543 (11)	0.3588 (5)	0.075 (2)	
C64	0.6096 (6)	1.1019 (8)	0.4282 (4)	0.053 (3)	
C65	0.6144 (8)	1.1804 (9)	0.4766 (6)	0.075 (4)	
C66	0.6588 (9)	1.1252 (10)	0.5436 (6)	0.072 (4)	
C67	0.7030 (7)	0.9884 (9)	0.5694 (4)	0.049 (3)	
C68	0.7458 (8)	0.9284 (12)	0.6377 (4)	0.069 (4)	
C69	0.7839 (8)	0.7975 (12)	0.6597 (4)	0.072 (4)	
C70	0.7774 (7)	0.7261 (9)	0.6133 (4)	0.056 (3)	
C71	0.7003 (5)	0.9088 (7)	0.5234 (3)	0.0334 (19)	
C72	0.6538 (6)	0.9681 (7)	0.4511 (3)	0.041 (2)	
011	0.4009 (8)	0.5285 (9)	0.3933 (4)	0.1090 (19)	
O12	0.3154 (8)	0.6897 (9)	0.3035 (4)	0.1090 (19)	
O13	0.2058 (8)	0.5725 (9)	0.3489 (4)	0.1090 (19)	

N5	0.3076 (11)	0.6002 (11) 0.3496 (6) 0.1	090 (19)	
O1W	0.8550 (4)	0.2838 (4)	0.8087 (2) 0.0	373 (14)	
O2W	0.7115 (6)	0.5915 (6)	0.4911 (3) 0.0	70 (2)	
H3A	0.07580	0.35180	-0.0109	0.0	260*	
H3B	0.13890	0.42290	-0.0523	0 0.0	260*	
H8	0.03190	1.17010	-0.1961	0 0.0	560*	
H9	-0.46530	0.61790	0.35310	0.12	260*	
H23	0.30870	0.69550	-0.1327	0.0	250*	
H24	0.27510	0.89200	-0.2083	0 0.0	320*	
H26	-0.04340	1.06600	-0.0950	0.02	240*	
H27	-0.01140	0.87000	-0.0188	0 0.0	220*	
H33	-0.22230	0.46410	0.17610	0.0	280*	
H34	-0.39630	0.53160	0.25390	0.0	360*	
H36	-0.17620	0.64680	0.35860	0.0	580*	
H37	-0.00240	0.57640	0.28220	0.0	370*	
H41	0.48810	0.38930	-0.0368	0 0.0	240*	
H42	0.69090	0.24950	-0.0726	0 0.0	280*	
H43	0.76710	0.03300	-0.0196	0 0.0	280*	
H45	0.73580	-0.15070	0.07320	0.0	340*	
H46	0.60650	-0.22060	0.15490	0.0	390*	
H48	0.38160	-0.17850	0.21540	0.0	380*	
H49	0.16820	-0.03750	0.22700	0.0	340*	
H50	0.10450	0.17830	0.16920	0.0	290*	
H83	0.87210	0.32070	0.36750	0.0	600*	
H84	0.86100	0.21180	0.28470	0.0	650*	
H85	0.92510	-0.00870	0.31300	0.0	590*	
H87	0.90650	0.33460	0.49240	0.0	580*	0.500
H88	0.98420	0.22370	0.60200	0.0	540*	0.500
H4	0.73500	0.73310	0.51850	0.04	480*	
H61	0.61150	0.88810	0.31400	0.0	890*	
H62	0.52650	1.10840	0.27200	0.0	890*	
H63	0.52850	1.24390	0.34160	0.0	890*	
H65	0.58650	1.27020	0.46130	0.0	890*	
H66	0.66070	1.17790	0.57380	0.0	860*	
H68	0.74870	0.97820	0.66940	0.0	820*	
H69	0.81410	0.75720	0.70580	0.0	860*	
H70	0.80180	0.63660	0.62860	0.0	670*	
H1A	0.82320	0.35200	0.82330	0.0	560*	
H1B	0.80360	0.28640	0.77950	0.0	560*	
H2A	0.68500	0.58770	0.45350	0.1	050*	
H2B	0.69560	0.53770	0.52280	0.1	050*	
Atomic disp	lacement parameter	$s(A^2)$				
wisp	U ¹¹	1) ²²	LI ³³	U^{12}	U ¹³	L) ²³
Fr1	0.0110(1)	0.0126(1)	0.0177(1)	-0.0017(1)	-0.0013(1)	-0.0031(1)
01	0.0243 (19)	0.018 (2)	0.026 (2)	-0.0047 (16)	-0.0082(16)	-0.0046 (16)
	· /	· · ·			. ,	. /

0.023 (2)

-0.0060 (16)

-0.0008 (15)

02

0.0178 (18)

0.026 (2)

-0.0020 (16)

~ ~	a aaa (a)	0.045 (0)	0.045 (0)	0.01= (0)	0.010 (0)	0.011(0)
03	0.039 (2)	0.045 (3)	0.045 (3)	-0.017 (2)	-0.019 (2)	-0.014 (2)
O3W	0.0143 (17)	0.0174 (19)	0.0191 (18)	-0.0043 (15)	-0.0005 (14)	-0.0025 (15)
04	0.0135 (17)	0.0150 (19)	0.025 (2)	0.0005 (15)	0.0031 (14)	-0.0037 (15)
05	0.0125 (17)	0.0163 (19)	0.0219 (19)	-0.0042 (14)	0.0000 (14)	-0.0022 (15)
06	0.0158 (18)	0.024 (2)	0.0207 (19)	-0.0077 (16)	-0.0009 (14)	-0.0024 (15)
07	0.0178 (18)	0.0184 (19)	0.0170 (18)	-0.0071 (15)	0.0021 (14)	-0.0039 (15)
08	0.047 (3)	0.019 (2)	0.035 (2)	-0.0078 (19)	0.015 (2)	0.0048 (18)
09	0.058 (4)	0.148 (7)	0.097 (5)	-0.067 (4)	0.056 (3)	-0.096 (5)
N1	0.012 (2)	0.016 (2)	0.022 (2)	-0.0026 (17)	-0.0039 (17)	-0.0077 (18)
N2	0.019 (2)	0.019 (2)	0.023 (2)	-0.0070 (19)	-0.0034 (18)	-0.0052 (19)
N8	0.012 (2)	0.028 (3)	0.028 (3)	-0.004(2)	-0.0001 (19)	-0.014 (2)
C21	0.014 (2)	0.017 (3)	0.018 (3)	-0.004 (2)	-0.003 (2)	-0.005 (2)
C22	0.013 (2)	0.014 (3)	0.023 (3)	-0.005 (2)	-0.003 (2)	-0.004 (2)
C23	0.019 (3)	0.020 (3)	0.022 (3)	-0.006 (2)	0.001 (2)	-0.004 (2)
C24	0.030 (3)	0.028 (3)	0.022 (3)	-0.013 (3)	0.011 (2)	-0.007 (2)
C25	0.028 (3)	0.019 (3)	0.024 (3)	-0.010 (2)	-0.001 (2)	0.000 (2)
C26	0.019 (3)	0.012 (3)	0.027 (3)	-0.001 (2)	-0.001 (2)	-0.006 (2)
C27	0.014 (2)	0.020 (3)	0.021 (3)	-0.005 (2)	0.004 (2)	-0.005 (2)
C31	0.021 (3)	0.012 (3)	0.017 (3)	-0.006 (2)	-0.002 (2)	0.001 (2)
C32	0.019 (3)	0.015 (3)	0.020 (3)	-0.006 (2)	0.001 (2)	0.000 (2)
C33	0.027 (3)	0.014 (3)	0.027 (3)	-0.007 (2)	0.001 (2)	-0.002 (2)
C34	0.023 (3)	0.034 (3)	0.040 (4)	-0.017 (3)	0.010 (3)	-0.013 (3)
C35	0.041 (4)	0.068 (5)	0.055 (4)	-0.035 (4)	0.027 (3)	-0.038 (4)
C36	0.049 (4)	0.078 (6)	0.044 (4)	-0.042 (4)	0.023 (3)	-0.041 (4)
C37	0.030 (3)	0.041 (4)	0.029 (3)	-0.020 (3)	0.008 (2)	-0.014 (3)
C41	0.016 (2)	0.020 (3)	0.025 (3)	-0.007 (2)	-0.002 (2)	-0.008 (2)
C42	0.013 (2)	0.027 (3)	0.033 (3)	-0.008 (2)	0.003 (2)	-0.013 (2)
C43	0.013 (2)	0.023 (3)	0.036 (3)	-0.001 (2)	-0.001 (2)	-0.020 (3)
C44	0.015 (3)	0.018 (3)	0.035 (3)	0.000 (2)	-0.009 (2)	-0.014 (2)
C45	0.023 (3)	0.018 (3)	0.039 (3)	0.002 (2)	-0.009 (3)	-0.011 (3)
C46	0.037 (3)	0.014 (3)	0.039 (4)	0.001 (3)	-0.013 (3)	-0.006 (3)
C47	0.033 (3)	0.015 (3)	0.025 (3)	-0.007 (2)	-0.010 (2)	-0.002 (2)
C48	0.049 (4)	0.018 (3)	0.028 (3)	-0.014 (3)	-0.013 (3)	0.002 (2)
C49	0.038 (3)	0.025 (3)	0.026 (3)	-0.017 (3)	-0.002 (2)	-0.004 (2)
C50	0.025 (3)	0.028 (3)	0.022 (3)	-0.012 (2)	-0.002 (2)	-0.006 (2)
C51	0.020 (3)	0.017 (3)	0.019 (3)	-0.005 (2)	-0.007 (2)	-0.005 (2)
C52	0.015 (2)	0.017 (3)	0.023 (3)	-0.005 (2)	-0.006 (2)	-0.008 (2)
N6	0.031 (3)	0.033 (3)	0.045 (4)	-0.013 (3)	0.004 (3)	0.001 (3)
N7	0.031 (3)	0.047 (4)	0.036 (3)	-0.019 (3)	0.005 (2)	-0.007 (3)
C81	0.026 (3)	0.034 (3)	0.030 (3)	-0.013 (3)	0.006 (2)	-0.002 (3)
C82	0.031 (3)	0.033 (3)	0.045 (4)	-0.013 (3)	0.004 (3)	0.001 (3)
C83	0.048 (4)	0.040 (4)	0.056 (5)	-0.022 (4)	0.001 (4)	0.014 (4)
C84	0.055 (5)	0.068 (6)	0.037 (4)	-0.033 (4)	-0.011 (3)	0.016 (4)
C85	0.038 (4)	0.080 (6)	0.037 (4)	-0.032 (4)	0.004 (3)	-0.008 (4)
C86	0.031 (3)	0.047 (4)	0.036 (3)	-0.019 (3)	0.005 (2)	-0.007 (3)
C87	0.022 (6)	0.047 (9)	0.054 (9)	-0.005 (6)	-0.003 (6)	0.022 (7)
C88	0.032 (7)	0.049 (9)	0.053 (9)	-0.016 (7)	0.006 (6)	-0.011 (7)
N3	0.036 (3)	0.070 (5)	0.027 (3)	-0.016 (3)	0.000 (2)	0.001 (3)
N4	0.029 (3)	0.050 (4)	0.030 (3)	-0.008 (3)	0.000 (2)	0.003 (3)
						. /

C61	0.029 (2)	0.106 (5)	0.052 (3)	-0.012 (3)	0.003 (2)	0.030 (3)
C62	0.029 (2)	0.106 (5)	0.052 (3)	-0.012 (3)	0.003 (2)	0.030 (3)
C63	0.029 (2)	0.106 (5)	0.052 (3)	-0.012 (3)	0.003 (2)	0.030 (3)
C64	0.022 (3)	0.043 (5)	0.066 (5)	-0.001 (3)	0.013 (3)	0.016 (4)
C65	0.046 (5)	0.043 (5)	0.120 (9)	-0.013 (4)	0.040 (5)	-0.010 (6)
C66	0.056 (5)	0.061 (6)	0.112 (8)	-0.032 (5)	0.043 (6)	-0.044 (6)
C67	0.028 (3)	0.071 (6)	0.054 (5)	-0.020 (4)	0.013 (3)	-0.026 (4)
C68	0.040 (4)	0.126 (10)	0.045 (5)	-0.027 (5)	0.005 (4)	-0.038 (6)
C69	0.038 (4)	0.126 (10)	0.028 (4)	-0.013 (5)	-0.002 (3)	-0.001 (5)
C70	0.033 (4)	0.077 (6)	0.031 (4)	-0.003 (4)	-0.004 (3)	0.008 (4)
C71	0.018 (3)	0.045 (4)	0.031 (3)	-0.009 (3)	0.005 (2)	-0.003 (3)
C72	0.019 (3)	0.056 (5)	0.034 (4)	-0.009 (3)	0.008 (3)	0.006 (3)
011	0.108 (3)	0.127 (4)	0.101 (3)	-0.076 (3)	-0.014 (2)	0.022 (3)
012	0.108 (3)	0.127 (4)	0.101 (3)	-0.076 (3)	-0.014 (2)	0.022 (3)
013	0.108 (3)	0.127 (4)	0.101 (3)	-0.076 (3)	-0.014 (2)	0.022 (3)
N5	0.108 (3)	0.127 (4)	0.101 (3)	-0.076 (3)	-0.014 (2)	0.022 (3)
O1W	0.042 (2)	0.019 (2)	0.050 (3)	-0.0106 (19)	0.003 (2)	-0.0084 (19)
O2W	0.090 (4)	0.067 (4)	0.049 (3)	-0.026 (4)	0.014 (3)	-0.016 (3)

Geometric parameters (Å, °)

Er1—O1	2.470 (4)	C44—C52	1.417 (8)
Er1—O2	2.376 (4)	C44—C45	1.431 (8)
Er1—O3W	2.358 (3)	C45—C46	1.331 (9)
Er1—O4	2.372 (3)	C46—C47	1.437 (9)
Er1—O5	2.399 (3)	C47—C51	1.399 (8)
Er1—O6	2.366 (4)	C47—C48	1.399 (9)
Er1—O7	2.433 (4)	C48—C49	1.355 (10)
Er1—N1	2.461 (4)	C49—C50	1.396 (9)
Er1—N2	2.489 (4)	C51—C52	1.457 (8)
O1—N8	1.264 (7)	С23—Н23	0.9300
O2—N8	1.264 (6)	C24—H24	0.9300
O3—N8	1.221 (6)	С26—Н26	0.9300
O4—C21	1.259 (6)	С27—Н27	0.9300
O5—C21	1.289 (7)	С33—Н33	0.9300
O6—C31	1.273 (7)	С34—Н34	0.9300
O7—C31	1.279 (7)	С36—Н36	0.9300
O8—C25	1.346 (7)	С37—Н37	0.9300
O9—C35	1.356 (10)	C41—H41	0.9300
O3W—H3B	0.8200	C42—H42	0.9300
O3W—H3A	0.8200	С43—Н43	0.9300
O8—H8	0.8200	C45—H45	0.9300
О9—Н9	0.8200	С46—Н46	0.9300
O11—N5	1.274 (15)	C48—H48	0.9300
O12—N5	1.217 (14)	C49—H49	0.9300
O13—N5	1.272 (16)	С50—Н50	0.9300
O1W—H1A	0.8200	C81—C82	1.368 (9)
O1W—H1B	0.8200	C81—C81 ⁱ	1.447 (8)
N1—C41	1.333 (7)	C81—C86	1.381 (9)

N1—C52	1.353 (7)	C82—C83	1.389 (10)
N2—C51	1.365 (7)	C82—C87	1.504 (17)
N2—C50	1.332 (7)	C83—C84	1.345 (12)
O2W—H2B	0.8200	C84—C85	1.350 (13)
O2W—H2A	0.8200	C85—C86	1.381 (10)
N6—C81	1.368 (9)	C87—C88	1.31 (2)
N6—C87	1.504 (17)	С83—Н83	0.9300
N6—C83	1.389 (10)	C84—H84	0.9300
N7—C85	1.381 (10)	С85—Н85	0.9300
N7—C81	1.381 (9)	С87—Н87	0.9300
N3—C61	1.312 (10)	C88—H88	0.9300
N3—C72	1.350 (10)	C61—C62	1.380 (15)
N4—C71	1.328 (10)	C62—C63	1.325 (15)
N4—C70	1.326 (10)	C63—C64	1.400 (12)
N4—H4	0.8600	C64—C72	1.383 (11)
C21—C22	1.470 (8)	C64—C65	1.444 (13)
C22—C27	1.403 (8)	C65—C66	1.346 (16)
C22—C23	1.391 (8)	C66—C67	1.420 (14)
C23—C24	1.371 (8)	C67—C68	1.371 (11)
C24—C25	1.384 (9)	C67—C71	1.410 (11)
C25—C26	1.394 (8)	C68—C69	1.356 (17)
C26—C27	1.371 (8)	C69—C70	1.358 (14)
C31—C32	1.474 (8)	C71—C72	1.448 (8)
C32—C37	1.381 (8)	C61—H61	0.9300
C32—C33	1.396 (8)	С62—Н62	0.9300
C33—C34	1.381 (9)	С63—Н63	0.9300
C34—C35	1.375 (10)	С65—Н65	0.9300
C35—C36	1.396 (12)	С66—Н66	0.9300
C36—C37	1.371 (10)	С68—Н68	0.9300
C41—C42	1.408 (8)	С69—Н69	0.9300
C42—C43	1.355 (8)	С70—Н70	0.9300
C43—C44	1.395 (8)		
$\Omega_1 - Fr_1 - \Omega_2$	52 34 (14)	N1—C41—C42	123.0 (5)
O1 = Er1 = O2	32.34(14)	C_{41} C_{42} C_{43}	123.0(5)
O1 = Er1 = O4	144.05(13) 120.59(13)	$C_{41} = C_{42} = C_{43}$	110.0(5)
01 = Er1 = 05	120.39(13) 130.28(13)	C_{42} C_{43} C_{44} C_{45}	120.7(3)
01 = Er1 = 06	130.26(13)	$C_{43} = C_{44} = C_{43}$	123.8(3)
01 = Er1 = 00	(13)	$C_{43} = C_{44} = C_{52}$	110.9(3)
$O_1 = E_1 = O_7$	111.35(13)	C43 - C44 - C32	119.5 (3)
O1 = E1 = N1	(2.53(15))	$C_{44} - C_{45} - C_{40}$	121.4(0)
O1 = Er1 = O21	120, 70, (14)	C45 - C40 - C47	121.7(0)
OI = ErI = C21	129.79 (16)	C40 - C47 - C51	119.0 (6)
$O_1 = E_1 = C_3 I$	91.78 (15)	$C_{48} - C_{47} - C_{51}$	117.0 (0)
02 = Er1 = 03 W	147.75 (12)	C40 - C47 - C48	123.5 (5)
02 - Erl = 04	15.78 (12)	(4) - (48 - (49))	120.1 (6)
02 - Erl = 00	85.49 (15) 75.19 (12)	143 - 149 - 150	119.1 (6)
U_2 —ErI—Ub	/ 5 . 18 (13)	IN2-C51-C47	123.0 (6)
U_2 —ErI— $U/$	128.27 (12)	N2-C51-C4/	122.5 (5)
O2—Erl—NI	84.17 (14)	N2—C51—C52	117.6 (5)
02—Er1—N2	119.87 (14)	C47—C51—C52	119.8 (5)

O2—Er1—C21	77.53 (15)	C44—C52—C51	118.7 (5)
O2—Er1—C31	101.38 (15)	N1—C52—C51	118.5 (5)
O3W—Er1—O4	72.86 (12)	N1—C52—C44	122.8 (5)
O3W—Er1—O5	84.64 (11)	С22—С23—Н23	120.00
O3W—Er1—O6	130.89 (12)	C24—C23—H23	120.00
O3W—Er1—O7	77.04 (12)	C25—C24—H24	119.00
O3W—Er1—N1	81.08 (13)	C23—C24—H24	119.00
O3W—Er1—N2	80.02 (12)	С25—С26—Н26	120.00
O3W—Er1—C21	78.02 (14)	С27—С26—Н26	120.00
O3W—Er1—C31	103.94 (15)	С22—С27—Н27	120.00
O4—Er1—O5	54.83 (12)	С26—С27—Н27	120.00
O4—Er1—O6	126.38 (13)	С34—С33—Н33	120.00
O4—Er1—O7	123.64 (12)	С32—С33—Н33	120.00
O4—Er1—N1	75.77 (12)	С33—С34—Н34	120.00
O4—Er1—N2	136.77 (12)	С35—С34—Н34	120.00
O4—Er1—C21	27.04 (14)	C35—C36—H36	120.00
O4—Er1—C31	128.77 (14)	C37—C36—H36	120.00
O5—Er1—O6	77.85 (13)	С36—С37—Н37	120.00
O5—Er1—O7	76.12 (11)	С32—С37—Н37	120.00
O5—Er1—N1	130.59 (12)	N1—C41—H41	119.00
O5—Er1—N2	154.27 (14)	C42—C41—H41	118.00
O5—Er1—C21	27.81 (14)	C43—C42—H42	121.00
O5—Er1—C31	73.95 (14)	C41—C42—H42	121.00
O6—Er1—O7	54.37 (12)	C44—C43—H43	120.00
O6—Er1—N1	142.83 (13)	C42—C43—H43	120.00
O6—Er1—N2	96.83 (13)	C46—C45—H45	119.00
O6—Er1—C21	102.45 (15)	C44—C45—H45	119.00
O6—Er1—C31	27.09 (15)	C47—C46—H46	119.00
O7—Er1—N1	143.43 (13)	C45—C46—H46	119.00
O7—Er1—N2	80.37 (13)	C49—C48—H48	120.00
O7—Er1—C21	100.89 (14)	C47—C48—H48	120.00
07—Er1—C31	27.34 (14)	C48—C49—H49	120.00
N1—Er1—N2	67.14 (14)	C50—C49—H49	121.00
NI—ErI—C2I	102.79 (15)	С49—С50—Н50	118.00
N1— $Er1$ — $C31$	155.46 (15)	N2—C50—H50	119.00
N2—Er1—C21	157.08 (15)	C81 ¹ —C81—C82	118.6 (6)
N2—Er1—C31	89.81 (15)	N7—C81—C82	122.5 (5)
C21—Er1—C31	101.75 (16)	N7—C81—C81 ⁱ	118.9 (6)
Er1—O1—N8	93.5 (3)	C82—C81—C86	122.5 (5)
Er1—O2—N8	98.0 (3)	N6—C81—C81 ⁱ	118.6 (6)
Er1—O4—C21	94.0 (3)	N6—C81—C86	122.5 (5)
Er1—O5—C21	92.0 (3)	$C81^{i}$ —C81—C86	118.9 (6)
Er1—06—C31	95 1 (3)	N6-C81-N7	122.5 (5)
Er1—07—C31	91.8 (3)	C83—C82—C87	120.5 (8)
H3A—O3W—H3B	110.00	C81—C82—C83	116.7 (6)
Er1—O3W—H3B	110.00	C81—C82—C87	122.7 (8)
Er1—O3W—H3A	118.00	N6—C83—C84	122.4 (8)
С25—О8—Н8	109.00	C82—C83—C84	122.4 (8)
			· · /

С35—О9—Н9	109.00	C83—C84—C85	119.4 (7)
H1A—O1W—H1B	108.00	C84—C85—C86	121.7 (8)
C41—N1—C52	117.8 (5)	N7—C85—C84	121.7 (8)
Er1—N1—C41	124.3 (3)	C81—C86—C85	117.4 (6)
Er1—N1—C52	117.7 (3)	C82—C87—C88	117.9 (13)
C50—N2—C51	117.7 (5)	N6-C87-C88	117.9 (13)
Er1—N2—C50	125.0 (4)	С82—С83—Н83	119.00
Er1—N2—C51	116.3 (3)	С84—С83—Н83	119.00
O1—N8—O2	115.5 (4)	N6—C83—H83	119.00
O1—N8—O3	121.9 (5)	C85—C84—H84	120.00
O2—N8—O3	122.5 (5)	С83—С84—Н84	120.00
H2A—O2W—H2B	108.00	С84—С85—Н85	119.00
C81—N6—C87	122.7 (8)	N7—C85—H85	119.00
C81—N6—C83	116.7 (6)	С86—С85—Н85	119.00
C83—N6—C87	120.5 (8)	С88—С87—Н87	121.00
C81—N7—C85	117.4 (6)	N6—C87—H87	121.00
C61—N3—C72	116.4 (8)	С82—С87—Н87	121.00
C70—N4—C71	120.9 (7)	С87—С88—Н88	120.00
C71—N4—H4	120.00	N3—C61—C62	124.2 (9)
C70—N4—H4	119.00	C61—C62—C63	119.4 (9)
O12—N5—O13	117.0 (11)	C62—C63—C64	119.3 (10)
O11—N5—O13	120.0 (11)	C63—C64—C65	123.3 (9)
O11—N5—O12	122.7 (12)	C63—C64—C72	117.6 (8)
Er1—C21—C22	177.2 (4)	C65—C64—C72	119.1 (7)
O4—C21—O5	119.1 (5)	C64—C65—C66	120.9 (9)
O4—C21—C22	120.6 (5)	C65—C66—C67	121.7 (10)
O5—C21—C22	120.3 (5)	C68—C67—C71	117.4 (9)
Er1—C21—O5	60.2 (3)	C66—C67—C71	118.9 (8)
Er1—C21—O4	59.0 (3)	C66—C67—C68	123.6 (9)
C21—C22—C27	120.9 (5)	C67—C68—C69	120.9 (9)
C23—C22—C27	119.1 (5)	C68—C69—C70	119.0 (8)
C21—C22—C23	120.0 (5)	N4—C70—C69	121.6 (9)
C22—C23—C24	120.1 (5)	N4—C71—C72	120.4 (6)
C23—C24—C25	121.1 (6)	C67—C71—C72	119.4 (7)
C24—C25—C26	119.0 (5)	N4—C71—C67	120.2 (6)
O8—C25—C24	118.0 (5)	N3—C72—C71	116.9 (6)
O8—C25—C26	123.1 (5)	C64—C72—C71	120.1 (6)
C25—C26—C27	120.5 (5)	N3—C72—C64	123.0 (6)
C22—C27—C26	120.2 (5)	N3—C61—H61	118.00
Er1—C31—C32	174.6 (4)	C62—C61—H61	118.00
Er1—C31—O6	57.9 (3)	С61—С62—Н62	120.00
O6—C31—C32	119.9 (5)	C63—C62—H62	120.00
Er1—C31—O7	60.9 (3)	С64—С63—Н63	120.00
O7—C31—C32	121.6 (5)	С62—С63—Н63	120.00
06—C31—O7	118.5 (5)	С66—С65—Н65	120.00
C33—C32—C37	118.7 (5)	С64—С65—Н65	120.00
C31—C32—C37	120.2 (6)	С65—С66—Н66	119.00
C31—C32—C33	121.1 (5)	С67—С66—Н66	119.00
C32—C33—C34	120.8 (5)	С67—С68—Н68	120.00

C33—C34—C35	119.7 (7)	С69—С68—Н68	120.00
C34—C35—C36	119.9 (7)	С70—С69—Н69	120.00
O9—C35—C36	117.9 (7)	С68—С69—Н69	121.00
O9—C35—C34	122.1 (7)	С69—С70—Н70	119.00
C35—C36—C37	120.0 (7)	N4—C70—H70	119.00
C32—C37—C36	120.9 (7)		
O2—Er1—O1—N8	4.8 (3)	Er1—O6—C31—O7	5.4 (5)
O3W—Er1—O1—N8	144.2 (3)	Er1-06-C31-C32	-174.3 (4)
O4—Er1—O1—N8	40.0 (3)	Er1—O7—C31—C32	174.4 (5)
O5—Er1—O1—N8	-27.9 (4)	Er1—O7—C31—O6	-5.2 (5)
O6—Er1—O1—N8	-81.4 (3)	C52—N1—C41—C42	0.6 (8)
O7—Er1—O1—N8	-117.7 (3)	Er1—N1—C52—C44	-172.0 (4)
N1—Er1—O1—N8	101.0 (3)	Er1—N1—C52—C51	9.3 (6)
N2—Er1—O1—N8	172.7 (3)	C41—N1—C52—C44	2.4 (8)
C21—Er1—O1—N8	8.7 (4)	Er1—N1—C41—C42	174.6 (4)
C31—Er1—O1—N8	-98.2 (3)	C41—N1—C52—C51	-176.4 (5)
O1—Er1—O2—N8	-4.8 (3)	C50—N2—C51—C47	-1.6 (8)
O3W—Er1—O2—N8	-140.2(3)	C50—N2—C51—C52	175.3 (5)
04—Er1—02—N8	-154.0(3)	Er1—N2—C51—C52	-15.8 (6)
05-Fr1-02-N8	150 7 (3)	Er1-N2-C50-C49	-165.8(4)
06-Fr1-02-N8	71.6(3)	$C_{51} - N_{2} - C_{50} - C_{49}$	2 1 (8)
07 - Fr1 - 02 - N8	84 1 (3)	$Fr1_N2_C51_C47$	1673(4)
N1 - Fr1 - O2 - N8	-77.2(3)	C83 - N6 - C87 - C88	-1790(12)
N2 - Fr1 - O2 - N8	-17.8(3)	C83 - N6 - C81 - C86	0.4(11)
$C_{21} = E_{\pi 1} = O_2 = N_2^0$	17.0(3)		170.0 (7)
C21—ErI—O2—N8	1/8.5 (3)	C83—N6—C81—C81	179.9 (7)
C31—Er1—O2—N8	78.6 (3)	C87—N6—C81—N7	177.0 (9)
O1—Er1—O4—C21	-118.5 (3)	C87—N6—C81—C86	177.0 (9)
O2—Er1—O4—C21	-90.4 (3)	C87—N6—C81—C81 ⁱ	-3.4 (12)
O3W—Er1—O4—C21	97.3 (3)	C81—N6—C83—C84	0.5 (12)
O5-Er1-O4-C21	1.7 (3)	C83—N6—C81—N7	0.4 (11)
O6—Er1—O4—C21	-31.3 (4)	C81—N6—C87—C88	4.5 (18)
O7—Er1—O4—C21	36.4 (3)	C87—N6—C83—C84	-176.3 (10)
N1—Er1—O4—C21	-177.9 (3)	C85—N7—C81—C81 ⁱ	179.6 (7)
N2—Er1—O4—C21	150.9 (3)	C81—N7—C85—C84	0.5 (12)
C31—Er1—O4—C21	2.9 (4)	C85—N7—C81—C82	-0.8 (11)
O1—Er1—O5—C21	101.0 (3)	C85—N7—C81—N6	-0.8 (11)
O2—Er1—O5—C21	75.6 (3)	C61—N3—C72—C64	-2.2 (11)
O3W—Er1—O5—C21	-74.4 (3)	C72—N3—C61—C62	-0.2(12)
O4—Er1—O5—C21	-1.6 (3)	C61—N3—C72—C71	177.9 (7)
O6—Er1—O5—C21	151.8 (3)	C71—N4—C70—C69	-0.8 (12)
O7—Er1—O5—C21	-152.4 (3)	C70—N4—C71—C67	-0.2(11)
N1—Er1—O5—C21	-1.0 (4)	C70—N4—C71—C72	-178.6 (7)
N2—Er1—O5—C21	-127.8 (4)	O5—C21—C22—C23	-179.2(5)
C31—Er1—O5—C21	179.4 (3)	Q4—C21—C22—C27	-176.5(5)
01—Er1—O6—C31	-140.4 (3)	O5-C21-C22-C27	3.2 (8)
02-Er1-06-C31	164.8 (3)	04-C21-C22-C23	1.2 (8)
O3W—Er1— $O6$ — $C31$	6.7 (4)	C_{21} C_{22} C_{23} C_{24}	-177 9 (6)
04—Er1— 06 —C31	105.5 (3)	C_{23} C_{22} C_{27} C_{26}	0.2 (9)
	(0)		(>)

O5—Er1—O6—C31	78.5 (3)	C21—C22—C27—C26	177.9 (5)
O7—Er1—O6—C31	-3.1 (3)	C27—C22—C23—C24	-0.2 (9)
N1—Er1—O6—C31	-136.7 (3)	C22—C23—C24—C25	-0.3 (9)
N2—Er1—O6—C31	-76.0 (3)	C23—C24—C25—C26	0.8 (9)
C21—Er1—O6—C31	91.5 (3)	C23—C24—C25—O8	-179.0 (6)
O1—Er1—O7—C31	46.4 (3)	O8—C25—C26—C27	179.0 (5)
O2—Er1—O7—C31	-11.9 (3)	C24—C25—C26—C27	-0.8 (9)
O3W—Er1—O7—C31	-169.4 (3)	C25—C26—C27—C22	0.3 (9)
O4—Er1—O7—C31	-110.5 (3)	O6—C31—C32—C37	2.9 (8)
O5—Er1—O7—C31	-81.8 (3)	O6—C31—C32—C33	-176.3 (5)
O6—Er1—O7—C31	3.0 (3)	O7—C31—C32—C33	4.1 (8)
N1—Er1—O7—C31	135.8 (3)	O7—C31—C32—C37	-176.7 (5)
N2—Er1—O7—C31	108.7 (3)	C31—C32—C33—C34	178.5 (5)
C21—Er1—O7—C31	-94.6 (3)	C33—C32—C37—C36	0.2 (9)
O1—Er1—N1—C41	-112.5 (4)	C31—C32—C37—C36	-179.1 (6)
O1—Er1—N1—C52	61.5 (4)	C37—C32—C33—C34	-0.8 (8)
O2—Er1—N1—C41	-60.2 (4)	C32—C33—C34—C35	0.6 (9)
O2—Er1—N1—C52	113.7 (4)	C33—C34—C35—O9	-177.7 (7)
O3W—Er1—N1—C41	91.0 (4)	C33—C34—C35—C36	0.3 (11)
O3W—Er1—N1—C52	-95.0 (4)	O9—C35—C36—C37	177.2 (7)
O4—Er1—N1—C41	16.6 (4)	C34—C35—C36—C37	-0.8 (12)
O4—Er1—N1—C52	-169.5 (4)	C35—C36—C37—C32	0.6 (11)
O5—Er1—N1—C41	16.0 (5)	N1—C41—C42—C43	-2.0 (9)
O5—Er1—N1—C52	-170.0 (3)	C41—C42—C43—C44	0.4 (9)
O6—Er1—N1—C41	-116.2 (4)	C42—C43—C44—C45	-178.3 (6)
O6—Er1—N1—C52	57.8 (5)	C42—C43—C44—C52	2.3 (8)
O7—Er1—N1—C41	144.7 (4)	C43—C44—C52—C51	174.9 (5)
O7—Er1—N1—C52	-41.4 (5)	C45—C44—C52—C51	-4.5 (8)
N2—Er1—N1—C41	173.9 (5)	C45—C44—C52—N1	176.7 (5)
N2—Er1—N1—C52	-12.2 (4)	C43—C44—C45—C46	-177.6 (6)
C21—Er1—N1—C41	15.6 (4)	C43—C44—C52—N1	-3.8 (8)
C21—Er1—N1—C52	-170.5 (4)	C52—C44—C45—C46	1.9 (9)
C31—Er1—N1—C41	-164.9 (4)	C44—C45—C46—C47	2.7 (10)
C31—Er1—N1—C52	9.0 (6)	C45—C46—C47—C51	-4.5 (9)
O1—Er1—N2—C50	103.0 (4)	C45—C46—C47—C48	175.1 (6)
O1—Er1—N2—C51	-65.0 (4)	C48—C47—C51—C52	-178.0 (5)
O2—Er1—N2—C50	114.1 (4)	C46—C47—C51—N2	178.4 (5)
O2—Er1—N2—C51	-53.9 (4)	C46—C47—C48—C49	-176.1 (6)
O3W—Er1—N2—C50	-93.2 (4)	C51—C47—C48—C49	3.5 (9)
O3W—Er1—N2—C51	98.9 (4)	C46—C47—C51—C52	1.6 (8)
O4—Er1—N2—C50	-144.6 (4)	C48—C47—C51—N2	-1.1 (9)
O4—Er1—N2—C51	47.5 (4)	C47—C48—C49—C50	-3.0 (9)
O5—Er1—N2—C50	-38.9 (6)	C48—C49—C50—N2	0.2 (9)
O5—Er1—N2—C51	153.2 (3)	N2-C51-C52-N1	4.6 (8)
O6—Er1—N2—C50	37.3 (4)	N2—C51—C52—C44	-174.2 (5)
O6—Er1—N2—C51	-130.7 (4)	C47—C51—C52—C44	2.8 (8)
O7—Er1—N2—C50	-14.8 (4)	C47—C51—C52—N1	-178.4 (5)
O7—Er1—N2—C51	177.3 (4)	C86—C81—C82—C83	0.4 (11)
N1—Er1—N2—C50	-177.6 (5)	C86—C81—C82—C87	177.0 (9)

N1—Er1—N2—C51	14.4 (3)	N7—C81—C82—C87	177.0 (9)
C21-Er1-N2-C50	-110.0 (5)	N6-C81-C81 ⁱ -N6 ⁱ	-180.0 (7)
C21—Er1—N2—C51	82.1 (6)	N6-C81-C81 ⁱ -N7 ⁱ	0.4 (10)
C31—Er1—N2—C50	11.0 (4)	C81 ⁱ —C81—C82—C83	179.9 (7)
C31—Er1—N2—C51	-156.9 (4)	C81 ⁱ —C81—C82—C87	-3.4(12)
O1—Er1—C21—O4	79.9 (3)	N6—C81—C86—C85	-0.8 (11)
O1—Er1—C21—O5	-103.0 (3)	C82—C81—C86—C85	-0.8 (11)
O2—Er1—C21—O4	83.1 (3)	C81 ⁱ —C81—C86—C85	179.6 (7)
O2—Er1—C21—O5	-99.8 (3)	$C86-C81-C81^{i}-N7^{i}$	-180.0(7)
O3W—Fr1—C21—O4	-75.7(3)	N7-C81-C82-C83	0.4 (11)
O_{3W} Er1 C_{21} O_{1}	101 4 (3)	$C_{82}^{82} - C_{81}^{81} - C_{81}^{1i} - N_{6}^{1i}$	-1800(7)
04—Er1—C21—O5	177.1 (5)	$N7-C81-C81^{i}-N6^{i}$	-0.4 (10)
O5—Er1—C21—O4	-177.1 (5)	$N7-C81-C81^{i}-N7^{i}$	-180.0 (7)
06—Er1—C21—O4	154.6 (3)	$C82 - C81 - C81^{i} - N7^{i}$	0.4 (10)
06—Er1—C21—O5	-28.3 (3)	$C86-C81-C81^{i}-N6^{i}$	-0.4 (10)
07 - Fr1 - C21 - 04	-1498(3)	C87 - C82 - C83 - C84	-176.3(10)
07 - Er1 - C21 - O5	27 3 (3)	C81 - C82 - C83 - C84	0.5 (12)
N1 - Er1 - C21 - O4	21(3)	C81 - C82 - C87 - C88	4 5 (18)
N1-Er1-C21-O5	179.2 (3)	C83—C82—C87—C88	-179.0(12)
N2—Er1—C21—O4	-58.8 (6)	N6—C83—C84—C85	-0.8(14)
N2—Er1—C21—O5	118.3 (4)	C82—C83—C84—C85	-0.8(14)
C31—Er1—C21—O4	-177.7(3)	C83—C84—C85—C86	0.3 (14)
C31—Er1—C21—O5	-0.6(3)	C83—C84—C85—N7	0.3 (14)
O1—Er1—C31—O6	36.9 (3)	C84—C85—C86—C81	0.5 (12)
O1—Er1—C31—O7	-137.7 (3)	N3—C61—C62—C63	1.9 (14)
O2—Er1—C31—O6	-15.0 (3)	C61—C62—C63—C64	-1.1 (13)
O2—Er1—C31—O7	170.5 (3)	C62—C63—C64—C65	179.8 (9)
O3W—Er1—C31—O6	-174.8 (3)	C62—C63—C64—C72	-1.1 (12)
O3W—Er1—C31—O7	10.6 (3)	C63—C64—C65—C66	177.9 (9)
O4—Er1—C31—O6	-95.8 (3)	C72—C64—C65—C66	-1.2 (13)
O4—Er1—C31—O7	89.7 (3)	C63—C64—C72—N3	2.9 (11)
O5—Er1—C31—O6	-94.7 (3)	C63—C64—C72—C71	-177.3 (7)
O5—Er1—C31—O7	90.7 (3)	C65—C64—C72—N3	-178.0 (7)
O6—Er1—C31—O7	-174.6 (5)	C65—C64—C72—C71	1.9 (11)
O7—Er1—C31—O6	174.6 (5)	C64—C65—C66—C67	0.2 (15)
N1—Er1—C31—O6	86.1 (5)	C65—C66—C67—C68	-178.3 (10)
N1—Er1—C31—O7	-88.5 (5)	C65—C66—C67—C71	0.1 (14)
N2—Er1—C31—O6	105.5 (3)	C66—C67—C68—C69	178.4 (10)
N2—Er1—C31—O7	-69.1 (3)	C71—C67—C68—C69	0.0 (14)
C21—Er1—C31—O6	-94.4 (3)	C66—C67—C71—N4	-177.9 (8)
C21—Er1—C31—O7	91.0 (3)	C66—C67—C71—C72	0.5 (11)
Er1—O1—N8—O3	173.3 (5)	C68—C67—C71—N4	0.6 (11)
Er1-01-N8-02	-7.9 (4)	C68—C67—C71—C72	179.0 (8)
Er1-02-N8-03	-173.0 (5)	C67—C68—C69—C70	-0.9 (15)
Er1-02-N8-01	8.3 (5)	C68—C69—C70—N4	1.3 (14)
Er1-04-C21-O5	-2.9 (5)	N4-C71-C72-N3	-3.3 (10)
Er1-04-C21-C22	176.8 (5)	N4—C71—C72—C64	176.9 (7)

Er1-05-C21-C22	-176.8 (5)		C67—C71—C72—N3		178.3 (7)
Er1	2.9 (5)		C67—C71—C72—C64		-1.5 (10)
Symmetry codes: (i) $-x+2$, $-y$, $-z$	+1.				
Hydrogen-bond geometry (Å, °)				
Cg4 is the centroid of the C32-	-C37 ring.				
D—H··· A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1W—H1A···O2 ⁱⁱ		0.82	2.55	3.270 (6)	148
O1W—H1A···O6 ⁱⁱ		0.82	2.22	2.875 (6)	137
O1W—H1B····O12 ⁱⁱ		0.82	2.06	2.872 (10)	172
O2W—H2A····O9 ⁱⁱⁱ		0.82	1.94	2.737 (8)	164
O2W—H2B…O11 ⁱⁱ		0.82	2.01	2.789 (10)	157
O3W—H3A···O5 ^{iv}		0.82	1.90	2.671 (5)	155
O3W—H3B····O7 ^{iv}		0.82	2.16	2.836 (5)	140
N4—H4···O2W		0.86	1.91	2.725 (9)	157
O8—H8···O1W ^v		0.82	1.87	2.659 (6)	160
09—H9…O11 ^{vi}		0.82	2.09	2.803 (12)	145
O9—H9…O12 ^{vi}		0.82	2.43	3.172 (12)	151
C34—H34…O3 ^{vi}		0.93	2.43	3.256 (8)	148
C48—H48…O12 ^{vii}		0.93	2.27	3.046 (11)	141
C62—H62···O1 ^{viii}		0.93	2.55	3.387 (10)	150
C70—H70…O13 ⁱⁱ		0.93	2.35	3.244 (13)	161
C83—H83····Cg4 ⁱⁱⁱ		0.93	2.78	3.628 (9)	152

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) -x, -y+1, -z; (v) x-1, y+1, z-1; (vi) x-1, y, z; (vii) x, y-1, z; (viii) x, y+1, z.

Fig. 1

